​微信公众号
手机版
​​新浪微博
会员登录
关于我们  |   商务合作  |  友情链接   |  意见反馈  |  人才招聘
北京云翼同创科技有限公司 深圳高博特文化发展有限公司   版权所有,并保留所有权利 © 2018 京ICP备16044150号-1                       

跨界 · 融合 · 服务 · 创新



双击此处添加文字
新闻聚焦
行业技术
首页  >  新闻聚焦   >  行业技术  >   详情
基于深度学习与光电探测的无人机防范技术
来源:AUVSC | 作者:杨名宇 王 浩 王含宇 | 发布时间: 2022-02-21 | 11399 次浏览 | 分享到:
无人机的无序“黑飞”带来一系列安全及社会问题,如何有效地对无人机进行探测、识别甚至打击是当今研究的热点与难点……

TAO L, HONG T, CHAO X. Drone identification and location tracking based on YOLOv3 [J]. Chinese Journal of Engineering, 2020, 42(4): 463-468. (in Chinese)

[10] HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks [J]. Science, 2006, 313(5786): 504-507.

[11] 范丽丽,赵宏伟,赵浩宇,等.基于深度卷积神经网络的目标检测研究综述[J].光学 精密工程,2020,28(5):1152-1164.

FAN L L, ZHAO H W, ZHAO H Y, et al. Survey of target detection based on deep convolutional neural networks [J]. Optics and Precision Engineering, 2020, 28(5): 1152-1164. (in Chinese)

[12] 梁华,宋玉龙,钱锋,等.基于深度学习的航空对地小目标检测[J].液晶与显示,2018,33(9):793-800.

LIANG H, SONG Y L, QIAN F, et al. Detection of small target in aerial photography based on deep learning [J]. Chinese Journal of Liquid Crystals and Displays, 2018, 33(9): 793-800. (in Chinese)

[13] 马浩鹏,朱春媚,周文辉,等.基于深度学习的乳液泵缺陷检测算法[J].液晶与显示,2019,34(1):81-89.

MA H P, ZHU C M, ZHOU W H, et al. Defect detection algorithm of lotion pump based on deep learning [J]. Chinese Journal of Liquid Crystals and Displays, 2019, 34(1): 81-89. (in Chinese)

[14] REDMON J, FARHADI A. YOLOv3: an incremental improvement [J]. arXiv: 1804.02767v1, 2018.

[15] 马永杰,宋晓凤.基于YOLO和嵌入式系统的车流量检测[J].液晶与显示,2019,34(6):613-618.

MA Y J, SONG X F. Vehicle flow detection based on YOLO and embedded system [J]. Chinese Journal of Liquid Crystals and Displays, 2019, 34(6): 613-618. (in Chinese)

[16] 郑欣,田博,李晶晶.基于YOLO模型的宫颈细胞簇团智能识别方法[J].液晶与显示,2018,33(11):965-971.

ZHENG X, TIAN B, LI J J. Intelligent recognition method of cervical cell cluster based on YOLO model [J]. Chinese Journal of Liquid Crystals and Displays, 2018, 33(11): 965-971. (in Chinese)

[17] 方明,孙腾腾,邵桢.基于改进YOLOv2的快速安全帽佩戴情况检测[J].光学 精密工程,2019,27(5):1196-1205.

FANG M, SUN T T, SHAO Z. Fast helmet-wearing-condition detection based on improved YOLOv2 [J]. Optics and Precision Engineering, 2019, 27(5): 1196-1205. (in Chinese)

[18] 巫明秀,吴谨,张晨,等.基于改进YOLOv3的棉花异性纤维检测[J].液晶与显示,2020,35(11):1195-1203.

WU M X, WU J, ZHANG C, et al. Detection of foreign fiber in cotton based on improved YOLOv3 [J]. Chinese Journal of Liquid Crystals and Displays, 2020, 35(11): 1195-1203. (in Chinese)